
Abstract. A theoretical study of Heisenberg exchange
and double exchange effects in clusters with four and six
iron ions has been performed for [Fe4S3O]m+, [Fe4S4]

m+

(where m=3, 2), and [Fe6S6]
n+ (where n=5, 4) ions as

models of the Desulfovibrio vulgaris iron–sulfur centers.
Assuming that the redox potential mostly depends on
the Heisenberg spin coupling and the resonance delo-
calization, we performed an analysis of the reduction
process for the [Fe4S3O]3+/2+, [Fe4S4]

3+/2+, and
[Fe6S6]

5+/4+ ions and showed that the redox potential
can be calculated as a difference between average spin
energies of the tetravalent and pentavalent double
cubane superclusters. For the Heisenberg parameter of
J1=20 cm)1, the redox potential amounts to about
0.03 V. It complies with close to zero experimental
values of the redox potential.

Keywords: Heisenberg exchange – Prismane – Double
cubane – Hybrid cluster – Supercluster – Resonance
delocalization

1 Introduction

Iron–sulfur clusters form a large class of structures
that are important in metal cluster chemistry. Many
types of the Fe–S clusters have recently been synthe-
sized, structurally characterized and intensively inves-
tigated. A variety of synthetic methods have been
proposed for preparation of compounds with desired
properties, for example, the ox–redox potentials.
Organometallic Fe–S clusters can be obtained by

different methods, such as reactions of iron carbonyl
complexes with sulfur-supplying agents, reactions of
iron (II) salts and complexes with sulfides, or expan-
sion of small clusters [1, 2, 3, 4]. On the other hand,
Fe–S clusters have been observed in biological systems
and play important roles in many biological processes.
Such clusters of a mixed valence consisting of two,
three, four, and six or more iron ions are involved in
multi-electron-transfer processes or multi-electron-pair
redox catalysis in proteins and complex enzymes.
These processes are necessary for the activity of
biological systems [5, 6, 7].

The available experimental data are difficult to inter-
pret. The analysisis mainly based on electron paramag-
netic resonance (EPR) spectroscopy, Mössbauer
spectroscopy, magnetic circular dichroism spectroscopy,
potentiometric methods as well as resonance Raman
spectroscopy. For example, there are divergences in
qualification of the geometry and the size of the cluster
(number of iron ions and kind of bridge ions) in proteins
from Desulfovibrio vulgaris. On the basis of the EPR
spectroscopy analysis, it was hypothesized that the Fe–S
clusters in these proteins are of ‘‘prismane’’ type [8].

The new crystal structure of the isolated ‘‘prismane
protein’’ from D. vulgaris was determined in 1998 using
an X-ray method (with a resolution of 1.72 Å). It was
found that the protein does not contain the [Fe6S6]
prismane cluster (as previously published [8]) but two
4Fe clusters [9], i.e., cluster 1 (cubane [Fe4S4]) and
cluster 2 (the novel 4Fe ‘‘hybrid’’ cluster). The latter
consists of two l2-sulfido-bridges, two l2-oxo-bridges,
and a partially l2 bridged X. X represents a site whose
precise nature has not been defined, but which may
contain a disordered substrate molecule. This ‘‘open’’
structure suggests that it could be a site of catalytic
activity. In conclusion, the authors of the work ascer-
tained that ‘‘resonance Raman spectroscopy suggests
that the bridging ligand X, which could not be identified
unambiguously in the crystal structure, is a solvent-
exchangeable oxygen’’.
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Our first theoretical papers [10, 11, 12, 13, 14]
appeared nearly a decade ago and presented an inter-
pretation of the EPR data for the Fe–S systems. The
ambiguity of the structure of the D. vulgaris active
center may result from the too low resolution of the
X-ray method, as well as from the fact that different
experimental methods examine the system in different
ways and conditions. Therefore, the geometry of the
active protein center can seem to be different. For all
these reasons, theoretical examinations are necessary to
determine changes in the geometry of these centers
depending on number of iron ions and their valence
obtained from experimental data other than EPR, for
example, from electrochemical research (the ox–redox
characteristics). For the cluster of the high-potential iron
protein (HiPIP) type having a total spin of S=0 and 1/2
in the ground state, the experimental EPR data show the
redox potential Em (4+/5+) has value of +5 mV [9,
15]. The experimental data were confirmed by our the-
oretical investigations.

2 Theoretical models

The proposed theoretical considerations based on the
spin Hamiltonian allow us to calculate values of the total
spin for the ground state (comparable with the values
obtained using EPR) and the values of the redox poten-
tials. We have introduced a model of spin interactions for
the hybrid [Fe4S3O] and the cubane [Fe4S4] geometry as
well as [Fe6S6] of the prismane and double cubane [Fe6S6]
geometry to describe the Fe–S center in D. vulgaris.
Although the center of D. vulgaris is probably composed
of two 4Fe clusters, we have assumed that it is sufficient
to examine the system with six iron ions describing
the coupling of an additional two iron ions with the
cluster of four ions. We will also discuss the influence on
the redox potential, the spin configurations of the clusters
(low and high spin) and delocalization of electrons.

Assuming a given cluster geometry, one obtains a
Heisenberg Hamiltonian, which can be transformed in
order to calculate the energy of the spin states. Calcu-
lation of matrix elements requires appropriate n-j
Wigner symbols (e.g., 6-j in the case of the systems with
three ions and 12-j for tetramers with delocalization of
one electron). The Wigner symbols of 9-j type are
defined through algebraic formulas that are convenient
for numerical calculations, and are determined within
the quantum theory of the angular momentum. Models
connected with the spin interactions in real three-
dimensional space and connected with a spin algebra for
systems consisting of more than four metal ions were not
developed until the middle of the 1990s, when our first
publications, later publications of the Bencini group
appeared. Other publications of Coropceanu et al. [16],
Bencini et al. [17], and Borras et al. [18] presented special
calculations for three- and four-center clusters.

While changing the cluster structure, a change of the
spin Hamiltonian arises depending on the number and

the value of the Heisenberg exchange parameters Ji and
the values of the double-exchange b parameter. These
parameters depend on the cluster type as well as on the
ion type (and its valence) and the vibrational state of the
system. A very important issue is to determine possible
relationships between the Heisenberg Ji parameters, i.e.,
oscillation frequency, force constant of bonds, transfer
parameters [19]. In the Fe–S clusters showing the same
distance between the iron ions, the highest absolute
value is reached by the exchange parameter J1 describing
Fe(III)–Fe(III) coupling, the exchange parameter
describing Fe(III)–Fe(II) coupling has a lower absolute
value, and the exchange parameter describing Fe(II)–
Fe(II) coupling has the lowest absolute value [20, 21, 22,
23]. The values of the Heisenberg exchange
parameters decrease considerably when the distance
between the iron ions increases.

Here, we present our approach to calculations of the
redox potential using spin state energies as a model. The
analytical form of the matrix elements of the spin
Hamiltonian is very complicated [16, 18]. By applying
intermediate basis sets and uncoupling of spins, the spin
Hamiltonian could be simplified to have Wigner sym-
bols not higher than 9-j. In such a way, correlations have
been introduced between the matrix elements of the spin
Hamiltonian for the model systems consisting of four
iron ions (hybrid and cubane) and six iron ions (pris-
mane and double cubane). Comparison of the results for
numerically calculated spin state energies and average
energies of spin states for these structures allows us to
discuss the influence of the geometry change and the
number of iron ions and their valence on magnetic and
ox–redox properties of iron clusters modeling the active
center of D. vulgaris.

We will use our previous results for the model
cluster of prismane and double cubane geometry
[24, 25, 26]. Therefore, we introduced additional
expressions describing the spin energy – with single
exchange – elements Ĥconst, which depend on the
exchange parameters and the squares of appropriate
intermediate spins. Numerical calculations of the spin
interactions were performed using our own HMVC
package [27].

2.1 Spin Hamiltonian of the [Fe4S3O] and the [Fe4S4]
systems for the hybrid and the cubane clusters

We will introduce the theoretical models for the
[Fe4S3O]3+ and [Fe4S3O]2+ clusters (the active center of
D. vulgaris) describing the hybrid system which has been
recently determined using X-ray examinations [9] as well
as for the [Fe4S4]

3+ and [Fe4S4]
2+ clusters of cubane

type. These structures were theoretically examined by
other authors as well [28, 29]. We present the most
essential theory adjusted for numerical calculations of
the spin energies (the remaining necessary formulas are
in the Supporting Information available in the Elec-
tronic Supplementary Material, ESM).
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2.1.1 Model for the hybrid system

A suitable electron configuration of 3d5 and 3d6 is
expected for the Fe(III) and Fe(II) ions, respectively. We
assumed the spin numbers S1=S2=S3=5/2 and S4=2
for [Fe4S3 O]3+ and S1=S2=5/2, S3=2, and S4=2 for
[Fe4S3 O]2+ (Fig. 1a) and the following relationships for
Heisenberg parameters: J=J2 ‡ J1 ‡ J3>J4>J5 ‡ J6.
The values of the parameters in the following table were
used:

We introduced additionally relative parameters:
a1=J12/J23 and a2=J13/J23.

The Heisenberg Hamiltonian for the hybrid system
can be written as a general Hamiltonian for four inter-
acting spins:

Ĥ ¼ J1Ŝ2Ŝ3 þ J2Ŝ1Ŝ2 þ J3Ŝ1Ŝ3 þ J4Ŝ1Ŝ4 þ J5Ŝ2Ŝ4
þ J6Ŝ3Ŝ4: ð1Þ

2.1.2 Models for the cubane system

For the [Fe4S4]
3+ cluster of the cubane structure

(Fig. 1b) we assumed that the following values of the
spin numbers can be associated with each iron site:
S1=S2=S3=5/2 and S4=2. With respect to symmetry
and ion type,the following relations between the Hei-
senberg parameters occur: J12=J23=J13=J2 and

J14=J24=J34=J1. This allows us to introduce only one
parameter: a1=J2/J1.

The Heisenberg Hamiltonian for the cubane structure
looks as follows:

Ĥ ¼ J1 Ŝ1Ŝ4 þ Ŝ2Ŝ4 þ Ŝ3Ŝ4

� �
þ J2 Ŝ1Ŝ2 þ Ŝ1Ŝ3 þ Ŝ2Ŝ3

� �
:

ð2Þ

The mechanism of the resonance delocalization con-
sists in electron hopping between neighboring ions with
nonzero spin. It can be noticed that there are four
equivalent sites for one Fe(II) ion. We introduce a basis
set consisting of four spin functions
w1

Eh
Sð Þ; w2

Eh
Sð Þ, w3

Eh
Sð Þ, and w4

Eh
Sð Þ, where the upper

index denotes the site number of the Fe(II) ion. Tran-
sition from one site to the other consists in hopping of
one electron. All spin functions are equivalent. Let us
consider the hopping between ions 2 and 4.

The resonance delocalization energy takes the fol-
lowing form:

Ed ¼
X

i¼i S13,S24ð Þ
c2i S13,S24ð Þ b1 S24 þ 1=2

� �
: ð3Þ

Solving Eq. (4), we get the total energy Et:

det

E � Et Ed Ed Ed

Ed E � Et Ed Ed

Ed Ed E � Et Ed

Ed Ed Ed E � Et

0

BB@

1

CCA ¼ 0: ð4Þ

Fig. 1 Structures of the
clusters: a hybrid structure of
Fe4S3O X cluster, where X is
unknown; b idealized cubane
structure of the Fe4S4 cluster;
c prismane structure of the
Fe6S6X6 supercluster, where X
is Cl, Br, or I; d idealized double
cubane structure of the Fe6S6
supercluster

Parameter J23=J1 J12=J2 J13=J3 J34=J4 J14=J5 J24=J6
Value J1 (0.4–1.5)J1 (0.4–1.5)J1 0.4J1 0.1J1 0.1J1
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For the [Fe4S4]
2+ cluster (of cubane structure,

Fig. 1b) we assume S1=S2=5/2 and S3=S4=2, and
for the [Fe4S4]

3+ cluster we assume that the values of
the spin numbers that can be associated with each iron
site: S1=S2=S3=5/2 and S4=2, and in respect of
symmetry and the type of ions the following relations
between the Heisenberg parameters occur: J13=J23=
J14=J24=J1, J12=J2, and J34=J3 (in our numerical
calculations J34=0.8J1). Let us introduce two dimen-
sionless parameters a1=J2/J1 and a2=J3/J1 to describe
the diagrams.

Ĥ ¼ J1 Ŝ1Ŝ3þ Ŝ1Ŝ4þ Ŝ2Ŝ3þ Ŝ2Ŝ4

� �
þ J2Ŝ1Ŝ2þ J3Ŝ3Ŝ4 ð5Þ

There are six equivalent sites of two Fe(II) ions. In
order to describe the resonance delocalization let us
introduce the basis composed of six spin functions:
w12

Eh
Sð Þ , w13

Eh
Sð Þ, w14

Eh
Sð Þ, w23

Eh
Sð Þ, w24

Eh
Sð Þ; and w34

Eh
Sð Þ,

where the upper indexes denote the sites of Fe(II) ions.
Transitions from one site to another consist in hopping
of one or more electrons. All one-electron transitions are
equivalent. Similarly to [Fe4S4]

3+, let us consider hop-
ping between ions 2 and ion 4. Then,

Ed1 ¼
X

i¼i S13,S24ð Þ
c2i S13,S24ð Þb1 S24 þ 1=2

� �
. ð6Þ

All two-electron transitions are also equivalent. Let
us consider simultaneous hopping between ions 2 and 4
as well as between ions 1 and 3. Then,

Ed2 ¼
X

i¼i S24,S13ð Þ
c2i S24,S13ð Þb2 S24 þ 1=2

� �
S13 þ 1=2
� �

. ð7Þ

Let us introduce two double exchange parameters b1
and b2. Solving the equation

det

E�Et Ed1 Ed1 Ed1 Ed1 Ed2

Ed1 E�Et Ed1 Ed1 Ed2 Ed1

Ed1 Ed1 E�Et Ed2 Ed1 Ed1

Ed1 Ed1 Ed2 E�Et Ed1 Ed1

Ed1 Ed2 Ed1 Ed1 E�Et Ed1

Ed2 Ed1 Ed1 Ed1 Ed1 E�Et

0

BBBBBB@

1

CCCCCCA

¼ 0,

ð8Þ

we obtain the total energy Et.
If we have the spin energies, we can calculate the

average spin energy as a function of temperature T
(Eq. 9):

Eaverage ¼

P

i�all spin states

Ei Sð ÞDi Sð Þexp � Ei Sð Þ
kT

� �

P

i�all spin states

Di Sð Þexp � Ei Sð Þ
kT

� � : ð9Þ

The zero-point-energy (ZPE) reference for the spin-
coupled systems has been defined as the spin barycenter

energy (Eq. 10) of the spin ladder [30]. The spin bary-
center energy must be considered both for the reduced
form and for the oxidized form, while calculating the
redox potential, when we determine it from the differ-
ence of the appropriate ground spin state energies:

Ebarycenter ¼

P

i�all spin states

Ei Sð ÞDi Sð Þ
P

i�all spin states

Di Sð Þ ; ð10Þ

whereDi(S)=2S+1 – the degeneration number of the ith
spin state—and Ei(S) is the energy of the ith spin state.

2.2 Heisenberg Hamiltonian of the [Fe6S6] system
with resonance delocalization for the prismane and
the double cubane clusters

For each of the clusters (of a specified geometry) we
assume two different charges, which requires to intro-
duce a separate spin model (with respect to different
forms of resonance delocalization). Further, we describe
in detail the model for the [Fe6S6]

5+ prismane system
because it is published for the first time, whereas for the
[Fe6S6]

4+ prismane and double cubane systems key
issues will be mentioned to keep this publication read-
able (more details were included in our previous publi-
cations [24, 25, 26]).

2.2.1 Model for the prismane system

The Heisenberg Hamiltonian for the [Fe6S6]
5+ prismane

system presented in Fig. 1c can be written as:

Ĥ¼ J1 Ŝ1Ŝ6 þ Ŝ5Ŝ6

� �
þ J2 Ŝ1Ŝ2 þ Ŝ2Ŝ3 þ Ŝ3Ŝ4 þ Ŝ4Ŝ5

� �

þJ3 Ŝ2Ŝ6 þ Ŝ4Ŝ6

� �
þ J4 Ŝ1Ŝ3 þ Ŝ3Ŝ5 þ Ŝ1Ŝ4 þ Ŝ2Ŝ4

� �

þJ5Ŝ3Ŝ6 þ J6 Ŝ1Ŝ4 þ Ŝ2Ŝ5

� �
; ð11Þ

where Ji is one of the Heisenberg exchange parameters.
A suitable electron configuration of 3d5 and 3d6 is
expected for the Fe(III) and the Fe(II) ions, respectively;
thus S1=S2=S3=S4=S5=5/2 and S6=2.

The resonance delocalization can take place in sys-
tems of mixed valence. Since we have one Fe(II) ion in
the[Fe6S6]

5+ system investigated, the ion can be
observed in any position, always leading to the same
Heisenberg–Dirac–van Vleck (HDVV) Hamiltonian. In
this case, the delocalization of a missing electron should
be introduced for all six-iron ions. The wave function
can be written as:

W ¼ a1w1 þ a2w2 þ a3w3 þ a4w4 þ a5w5 þ a6w6; ð12Þ

where wi is an eigenfunction of the HDVV type and the
Fe(II) ion is located in the ith position. Because of the
system symmetry, the function wi will be the same for
each ‘‘i’’ position. In the case of the Fe–Fe distance, we
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can distinguish electron transfer of three types. The first
one is between the nearest neighbors, i.e., 1:2 and 2:3, d1
distance. The second type can be observed between ions
localized at hexagon corners, i.e., 1:3 and 2:4, d2 dis-
tance, and the third type is between the most distant
ions, i.e., 1:4, 2:5, and 3:6, d

3
distance.

Let us define Ĥd as the Hamiltonian containing the
electron transfer operators as described in our previous
publication [25]:

Ĥd¼ b1 d1ð Þ T̂12 þ T̂23 þ T̂34 þ T̂45 þ T̂56 þ T̂61

� �

þb2 d2ð Þ T̂13 þ T̂24 þ T̂35 þ T̂46 þ T̂51 þ T̂62

� �

þb3 d3ð Þ T̂14 þ T̂25 þ T̂36

� �
; ð13Þ

where

T̂ij udj ik¼ dik udj iiþdjk udj ij
� �

Sij þ 1=2
� �

ð14Þ

and

udj i ¼ S1S6 S16ð ÞS5 S156ð ÞS2S4 S24ð ÞS3 S234ð ÞSj i: ð15Þ

Here |ud>k is a base vector with a defied number Sij.
The index outside the brackets means that the Fe(II) ion
is located at the k-th point, and dij is a Kronecker delta.
The parameter bi (double exchange) depends above all
on the distance di .

The total Hamiltonian can be expressed as follows:

Ĥtotal ¼
X

i

Ĥi þ Ĥd; ð16Þ

where Ĥi is a HDVV operator that acts on the wi state
only.

In order to find the energy associated with the spin
interactions and described by the Hamiltonian (Eq. 16),
the following equation should be solved:

ĤtotalW ¼ EtotalW: ð17Þ

In matrix form, it is expressed as follows:

where Edi ¼
P

k

c2 kð Þ m udh jbi dið ÞT̂m n udj in
� �

Sm n þ 1=2
� �

and c(k) are expansion coefficients with k numbering /d

states.

The u0 function (eigenfunction of the Hamiltonian
Ĥ0, see Eq. 47) is expressed by the ud one:

S15ð Þ S135ð Þ S24ð Þ S246ð ÞSj i

¼
X

S16

X

S156S234

S16ð Þ S156ð Þ S24ð Þ S234ð ÞSj i

� S16ð Þ S156ð Þ S24ð Þ S234ð ÞS j S15ð Þ S156ð Þ S24ð Þ S234ð ÞSh i

� S15ð Þ S156ð Þ S24ð Þ S234ð ÞS j S15ð Þ S135ð Þ S24ð Þ S246ð ÞSh i;
ð19Þ

where

S16ð Þ S156ð Þ S24ð Þ S234ð ÞS j S15ð Þ S156ð Þ S24ð Þ S234ð ÞSh i

¼ �1ð ÞS5þS6þS15þS16 2S15 þ 1ð Þ 2S16 þ 1ð Þ½ �1=2

�
S5 S1 S15
S6 S156 S16

� � ð20Þ

and

S15ð Þ S156ð Þ S24ð Þ S234ð ÞS j S15ð Þ S135ð Þ S24ð Þ S246ð ÞSh i

¼ 2S135 þ 1ð Þ 2S246 þ 1ð Þ 2S156 þ 1ð Þ 2S234 þ 1ð Þ½ �
1=2

�
S15 S3 S135

S6 S24 S246

S156 S234 S

8
><

>:

9
>=

>;
:

ð21Þ

The influence of the electron transfer parameters b2
and b3 on Ĥd is negligible, since the values of these
integrals and all the same extradiagonal matrix elements
in Eq. (18) decrease rapidly with increasing distance
between the iron ions. Therefore, we will investigate the
influence of the resonance delocalization using one
parameter (only Ed1) and we will assume zero values of
the remaining Ed2 and Ed3 parameters.

For a Heisenberg Hamiltonian with the resonance
delocalization for the [Fe6S6]

4+ prismane system with
regard to a supercluster symmetry and electrostatic

interactions, we assumed Fe(III) at points 1, 2, 5, and 6
and Fe(II) points 3 and 4.

Then the Heisenberg Hamiltonian looks as follows:

det

E � Etotal Ed1 Ed2 Ed3 Ed2 Ed1

Ed1 E � Etotal Ed1 Ed2 Ed3 Ed2

Ed2 Ed1 E � Etotal Ed1 Ed2 Ed3

Ed3 Ed2 Ed1 E� Etotal Ed1 Ed2

Ed2 Ed3 Ed2 Ed1 E � Etotal Ed1

Ed1 Ed2 Ed3 Ed2 Ed1 E � Etotal

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼ 0 ð18Þ
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Ĥ ¼ J1 Ŝ1Ŝ4 þ Ŝ2Ŝ3 þ Ŝ3Ŝ6 þ Ŝ4Ŝ5

� �
þ J2 Ŝ1Ŝ6 þ Ŝ2Ŝ5

� �

þ J3 Ŝ3Ŝ5 þ Ŝ4Ŝ6 þ Ŝ1Ŝ3 þ Ŝ2Ŝ4

� �
þ J4 Ŝ1Ŝ5 þ Ŝ2Ŝ6

� �

þ J5 Ŝ1Ŝ2 þ Ŝ5Ŝ6
� �

þ J6Ŝ3Ŝ4: ð22Þ

The total Hamiltonian, including the double
exchange, takes the following form:

Ĥt ¼ Ĥ þ Ĥd; ð23Þ

where

Ĥd ¼ Ĥd 1�4;2�3ð Þ þ Ĥd 1�6;2�5ð Þ þ Ĥd 3�6;4�5ð Þ
¼ b T̂14 � T̂23

� �
þ T̂16 � T̂25

� �
þ T̂36 � T̂45

� �� �
; ð24Þ

where T̂ij denotes an electron hopping operator of the
pair ij, it acts only if the pair possesses an extra electron.
To obtain the eigenenergy of the Hamiltonian [42] one
should solve a secular equation:

det
E � Et Ed Ed

Ed E � Et Ed

Ed Ed E � Et

0

@

1

A ¼ 0; ð25Þ

where

Ed ¼ w12
Ek

Sð Þ
D 		Ĥd 1�4;2�3ð Þ w34

Ek
Sð Þ

		
E

¼ w12
Ek

Sð Þ
D 		Ĥd 1�6;2�5ð Þ w56

Ek
Sð Þ

		
E

¼ w34
Ek

Sð Þ
D 		Ĥd 3�6;4�5ð Þ w56

Ek
Sð Þ

		
E
: ð26Þ

Therefore the eigenfunction recorded with Eq. (26)
can be denoted as

wE Sð Þ ¼
X

i¼i S14,S23,S56,S1234ð Þ
ciE S14, S23, S56, S1234ð Þ

� S1S4 S14ð ÞS2S3 S23ð Þ S1234ð ÞS5S6 S56ð ÞSj i: ð27Þ

2.2.2 Model for the double cubane system

For the supercluster [Fe6S6]
5+ of double cubane

structure (Fig. 1d), we assume the following spin
numbers: S1=S2=S3=S4=S5=5/2 and S6=2, and we
can write the following equation for the Heisenberg
Hamiltonian:

Ĥ ¼ J1 Ŝ1 þ Ŝ2 þ Ŝ3 þ Ŝ4 þ Ŝ5

� �
Ŝ6

þJ2 Ŝ1Ŝ4 þ Ŝ1Ŝ5 þ Ŝ2Ŝ3 þ Ŝ3Ŝ5 þ Ŝ2Ŝ5 þ Ŝ4Ŝ5

� �

þJ3 Ŝ1Ŝ2 þ Ŝ3Ŝ4

� �
þ J3 Ŝ1Ŝ3 þ Ŝ2Ŝ4

� �
; ð28Þ

which is transformed to

Ĥ0 ¼ 1=2J1 Ŝ2 þ a1 � 1ð ÞŜ2
12345 þ a3 � a1ð Þ Ŝ2

13 þ Ŝ2
24

� �� �

þ Ĥconst ð29Þ

and

Ĥ1 ¼ 1=2J1 a2 � a1ð Þ Ŝ2
12 þ Ŝ2

34

� �
; ð30Þ

where

Ĥconst ¼ 1=2J1 �Ŝ2
6 þ a1 Ŝ2

1 þ Ŝ2
2 þ Ŝ2

5 þ Ŝ2
4 � Ŝ2

5

� ��

� a2 þ a3ð Þ Ŝ2
1 þ Ŝ2

2 þ Ŝ2
5 þ Ŝ2

4

� ��
: ð31Þ

In order to obtain resonance delocalization, we con-
sider two equivalent sites of one ion Fe(II)-points 5 and
6. Let us consider the hopping between ions 5 and 6.

Then, the delocalization energy is described by

Ed ¼
X

d

c2 dð Þ S56 þ 1=2

� �
, ð32Þ

where c(d) is an appropriate coefficient of the expansion
of the eigenfunction for the resonance delocalization Ĥd

in the base in which there is S56 spin; d numerates this
basis set. We obtain the total energy Et considering
double exchange solving the following secular equation:

det
E � Et Ed

Ed E � Et


 �
¼ 0. ð33Þ

For [Fe6S6]
4+ of double cubane geometry the

Heisenberg Hamiltonian can be denoted as

Ĥ ¼ J1 Ŝ3 þ Ŝ4
� �

Ŝ5 þ Ŝ6

� �
þ Ŝ1Ŝ4 þ Ŝ3Ŝ2

� �

þJ2 Ŝ1 þ Ŝ2
� �

Ŝ5 þ Ŝ6

� �
þ Ŝ5Ŝ6

� �

þJ3 Ŝ1Ŝ3 þ Ŝ2Ŝ4
� �

þ J4Ŝ1Ŝ2 þ J5Ŝ3Ŝ4; ð34Þ

where S1=S2=S5=S6=2.5 and S3=S4=2.
The double exchange Hamiltonian can be written as

Ĥd ¼ b T̂14 � T̂23

� �
ð35Þ

and the resonance energy can be denoted as

Ed ¼ wB
Ek

S,S56ð Þ
D 		Ĥd wA

Ek
S,S56ð Þ

		
E

¼ b
X

i¼i S14,S23,S1234ð Þ
c2iEk

S14,S23,S1234ð Þ

� S14 þ 1=2

� �
S23 þ 1=2

� �
.

ð36Þ
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3 Redox potential for cluster models of the D. vulgaris
center

It is worth emphasizing that the redox potential of the
systems with metal ions also depends on the negative
charge of the ligand that facilitates the occurrence of a
metal ion in a higher oxidation state (the higher the
negative charge, the lower the redox potential). It also
depends on the reductive capacity (r electron) of a
ligand that stabilizes the high redox grades of a given
metal ion, and on the oxidation capacity (p electron) of a
ligand that stabilizes the low redox grades of a metal.
Finally, the redox potential depends on the system
structure (i.e., on the cluster geometry), which can be
dependent on the redox grades of the metal ions and,
above all, can fluctuate together with the spin value of
the ground state of the system.

Calculations of the redox potentials for the Fe–S
proteins, using ab initio and density functional theory
methods, are very difficult. Until recently they have been
too complex for systems comprising more than one
metal ion. This situation changed in recent years. The
density functional calculations appear to be able to
determine the redox potentials in a more reliable way-
than before [26, 29, 30, 31, 32]. However, for many Fe–S
proteins the theoretical results are a few dozen percent
higher than the experimental results. This is due to a
number of reasons, above all to difficulties in deter-
mining the geometry (because of the complexity of the
system and the occurrence of processes such as the for-
mation of hydrogen bonds or the migration of protons).
The description of the latter is rather difficult. In addi-
tion, some errors may occur in predictions of the
response of a solvent or protein environment to a charge
change in the system. Therefore, it is still important
to look for methods that could facilitate modeling of
ox–redox processes.

We will demonstrate our results obtained based on
theoretical models. The redox potential can be presented
as a sum of the redox potential vacuum term of the
system in the absence of spin coupling, the Heisenberg
spin coupling, the resonance delocalization, and the
solvatation energy of the system [30, 31, 32, 33]. It has
been shown for [Fe4S4] systems that a relatively large
part of this sum is associated with the electron–electron
repulsion coupling, and the redox potential vacuum
term is almost completely compensated by the solvation
term. This causes a dependence of the redox potential
mostly on the Heisenberg spin coupling and the reso-
nance delocalization. We calculated the redox potential
assuming the previously mentioned data and using the
theoretical models (introduced in Sect. 2) for the
geometry of the clusters – prismane and double cubane
for [Fe6S6] systems and hybrid or cubane for [Fe4S3O]
and [Fe4S4] systems. Thereafter we will discuss the pos-
sible influence of the cluster geometry and resonance
delocalization on the value of the redox potential. This
can be considered in the framework of the spin Hamil-

tonian for an appropriate selection of the Heisenberg Ji
and double exchange b parameters (index i determines
the number of these parameters as a result of the model
applied).

The redox potential of the [Fe6S6]
5+/4+ or [Fe4S4]

3+/

2+ system can be calculated as a difference in the energy
of the states for [Fe6S6]

5+ and [Fe6S6]
4+ or [Fe4S4]

3+

and [Fe4S4]
2+, respectively. Analysis of the numerical

results in a graphical form and in tables can be per-
formed to demonstrate which clusters can be theoreti-
cally responsible for the actual redox process.

3.1 Results of calculations for the redox potential
of the [Fe4S3O] and the [Fe4S4] systems

The results of numerical calculations for the spin state
energy for the hybrid and cubane structures are pre-
sented in Figs. 2, 3, 4, and 5, ESM, Figs. 1–13, and
Table 1. Changes in the number of iron ions or in the
cluster structure influence not only the form of the spin
Hamiltonian but also the number and the values of the
Heisenberg Ji parameters and the values of the double
exchange parameters b.

For the [Fe4S3O] and the [Fe4S4] systems, we assumed
similar relations between the Heisenberg parameters as
those for the systems with six iron ions. Spin state
energies depending on the parameter a1 are presented in
Fig. 2 and ESM Figs. 1 and 2 for the hybrid cluster
(charge of +2 and +3) showing a linear function of this
parameter in the whole area, connected with the HiPIP
nature of the system. Moreover, these diagrams of en-
ergy states are reciprocally parallel. The ground states
for the systems show the lowest multiplicity for the hy-
brid cluster [Fe4S3O]3+ (ESM, Fig. 2). These two states
S=0.5 and 1.5 are situated very close to each other, and
higher states are well separated together with the
increasing total spin. In the case of the [Fe4S3O]2+ hy-
brid cluster (ESM, Fig. 1), the situation is very similar,
except for the accidental degeneracy, and the ground
state (with S=0) is well separated from the spin (S=1)
state. The sequence of the spin states is compliant with
the order set of the increasing total spin.

This picture does not change on changing the cluster
geometry (Fig. 3, ESM, Figs. 3 and 4) to the cubane one
for compounds with charges +3 and +2, except for the
differences in the energy. The corresponding states (of
the same total spin) for clusters of the cubane geometry
are located below the states determined for the clusters
with hybrid geometry. The use of the double exchange
(ESM, Figs. 5 and 6) results in shifting all the states
without changing the order of their energy. Therefore,
the resonance delocalization additionally stabilizes these
systems. Other parameters (i.e., a2 and a3) have rather a
slight influence on the energies and undoubtedly do not
change the energy order of the spin states.

Therefore, for the [Fe4S4]
3+ and the [Fe4S4]

2+ clus-
ters the calculated spin values for the ground state are
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consistent with the experimental EPR data for the syn-
thetic HiPIP-type clusters and clusters built into bio-
logical systems [34, 35].

A few of the lowest states for the systems with charge
+3 and +2 are presented for the hybrid structures and
for cubane ones in Figs. 2, 3, and, ESM Fig. 7. In the
region where a1>1.0 (typical for the HiPIP systems) we
can observe significant differences connected with the
structure of these clusters. By presenting the chosen
(substantial) lowest spin states in Figs. 2 and 3 for hy-
brid clusters of +3 and +2 ions, we demonstrate that
the states of S=0.5, 1.5, and 2.5 are located below the
corresponding three lowest states for the [Fe4S4]

2+ ion.
An inverse order can be observed for the cubane struc-
ture. The analysis of Fig. 3 and ESM, Fig. 7 shows that
independently of whether the resonance delocalization is
considered or not, the spin states for the [Fe4S4]

3+ ion
are located below the corresponding states for [Fe4S4]

2+.
Comparing the location of the few lowest spin energy
levels for all structures considered for the [Fe4S4]

3+ and
[Fe4S4]

2+ systems, one can observe the energy levels for

the cubane structure are significantly below (around
20 J1) the levels for the hybrid ones. Therefore, for the
assumed number of four iron ions, the reduction process
should occur in the states for the hybrid structure. The
redox potential calculated as a difference in the energies
of the ground spin states (with DZPE) for the +3 and
+2 clusters is negative ()0.1 V) for the hybrid structure
and positive (+0.22 V) for the cubane one (assuming
that for the Fe4S4 systems J1=200 cm)1 [36]).

Estimation of the redox potential can be carried out
on the basis of the values of the average energy of spin
interactions (calculated from Eq. 9). The function of the
average spin energy (in J1 parameters) versus tempera-
ture is presented in Fig. 4 and ESM, Figs. 12 and 13.
The values of the redox potential, calculated as the dif-
ference of average spin energies and spin energies of the
ground states for the [Fe4S4] or [Fe4S3O] systems, when
changing the geometry of the cluster in the reduction
process and at two extreme temperatures close to
absolute zero and room temperature, are presented in
Table 1. It should be noticed that for these temperatures
the redox process takes place with preservation of the
geometry of the cluster (for the hybrid-type geometry),
and the redox potential is negative and relatively low
(approximately a few J1). However, this potential

Fig. 2 Energy levels of a few of the lowest states (without
resonance delocalization) in relation to the parameter a1. The
continuous linemarks the states for [Fe4S4]

3+ and [Fe4S4]
2+, for the

hybrid structure.
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changes to a positive value when calculated for the
geometry of the cubane type. The minus sign of the
potential does not change when (in the redox process)
the hybrid geometry of the [Fe4S4]

3+ cluster changes to

[Fe4S4]
2+cubane geometry. This potential is positive and

about twice as high as the redox potential calculated for
the cubane geometry that is unchanged in the redox
process. In the case where the potential is calculated as
the appropriate differences in the spin state energies, we
observe a slight difference in the calculated redox

Fig. 3. Energy levels of a few of the lowest
states (with resonance delocalization) in
relation to the parameter a1 for [Fe4S4]

3+ and
[Fe4S4]

2+ for cubane structure.

Fig. 4. The average spin energy (in J1 units) as a function of
temperature for [Fe4S4]

2+ and [Fe4S4]
3+ hybrid clusters

Fig. 5. The average spin energy (in J1 units) as a function of
temperature for [Fe4S4]

2+ and [Fe4S4]
3+ cubane clusters (without

resonance delocalization)
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potential and the redox potential calculated from the
average values of spin energies.

Comparing the average spin energies calculated at
room temperature, one can state that independently of
other parameters the average energy values for the+3 ion
are lower than those for the +2 ion (for the a1 parameter
bounded in the HiPIP area) for the hybrid structure and
the difference amounts to approximately )37 mV (i.e.,
)1.5J1). However, for the cubane structure (Fig. 5) the
difference (+139 mV, i.e., 5.6J1) is positive and larger
than for the hybrid structure. In the case considered this
value agrees with the experimental one [34].

3.2 Results of the redox potential calculations for the
[Fe6S6] system

The energy levels are presented in Figs. 6, 7, 8, 9, 10, and
11 for a few of the lowest energy states (in the case of no
resonance delocalization) depending on the most
important a1 parameter (that is connected with the
Heisenberg J2 parameter describing antiferromagnetic
interactions between ions of mixed valence). The a1
value was estimated numerically only in the case of
single exchange for the [Fe6S6]

5+ and [Fe6S6]
4+ sup-

erclusters of the prismane as well as the double cubane
structure (for which the data can be taken from our
previous publications [11, 24, 25, 26]) in various con-
figurations of the cluster charge and the system struc-
ture. Appendix, Figs. 25–28 and 20–24 illustrate
corresponding combinations in the presence of the res-
onance delocalization.

The dependence of the spin energy states on a1 is
presented in Fig. 6 and shows no change of the double
cubane geometry. Assuming the redox potential as the
difference of the energy of the +5 and +4 forms in
the lowest spin states, we can conclude that in the
range 0.2–0.6 this function is non-linear, then it be-
comes linear and approaches a nearly constant value
of 13 J1, independent of a1. This applies, in particular,
to the HiPIP systems with a1>1 (such as the previ-
ously described supercluster from D. vulgaris). The
values of the redox potential function allow us to
conclude that the J2 parameter describing the antifer-
romagnetic interactions changes with the oxidation
state [32].

Using Fig. 7, we will analyze the situation where
the redox reaction occurs at the fixed [Fe6S6]

4+ and
[Fe6S6]

5+ geometry determined as prismane. The
dependence of the energy levels on a1 in a few of the
lowest [Fe6S6]

4+and [Fe6S6]
5+ states for the prismane

and double cubane structures is shown in Figs. 8 and 9.
In general, for the whole range of the a1 parameter, the
states for the prismane structure are located lower and,
what is more important, these states are located con-
siderably lower than the states connected with the dou-
ble cubane structure (Fig. 7). This decrease amounts to
approximately 410J1. Therefore, the previously men-
tioned decrease can be mainly connected with the change
of geometry of the supercluster, but only for the reduced
[Fe6S6]

4+ form. The analysis of the data presented in
Figs. 8 and 9 leads to the conclusion that for [Fe6S6]

5+

the states of the prismane structure are insignificantly
lower than the corresponding states for the double cu-
bane structure (approximately by 28J1). Summarizing,
we can affirm that in the case of the [Fe6S6]

4+ super-
cluster the spin states of the lowest energy belong to the
prismane-type structure.

The two highest states of the ions (ESM, Fig. 18) of
charges +4 and +5 (separated in energy by approxi-
mately 13J1) are connected with the double cubane
structure. Assuming that the redox potential is calcu-
lated as the difference in the energies of the ground spin
states (with DZPE) for the +5 and +4 clusters, the
redox potential should amount to +64 mV for
J1=20 cm)1. The experimental value of the redox
potential is close to zero and for the prismatic protein
from D. vulgaris it is+5 mV. The redox process can be
modeled by higher located states (induced states) con-
nected with the double cubane structure, whereas the
lower states are associated with the structure of higher
symmetry, i.e., the prismane one. Such a change in the
supercluster geometry requires much more energy than
in the case of the redox process.

The energy scheme obtained in the case with dou-
ble exchange and in the case of the resonance delo-
calization does not introduce changes to the previous
scheme of the energy levels (ESM, Figs. 14–17, 19)
and does not change the value of the redox potential,
which still amounts to around +62 mV (Table 2,
ESM, Fig. 19). First of all, the energy order of the
two states changes, i.e., the energy of the state with
S=4 for [Fe6S6]

4+ of the double cubane structure

Table 1. Redox potential for the [Fe4S3O] and the [Fe4S4] systems (in J1 units). H and C denotes hybrid and cubane cluster geometries,
respectively

Temperature Geometry of the
clusters

Redox potential as the difference of
the average energy of the spin states
(Heisenberg exchange)

Redox potential as the difference of the
energy of the lowest spin states
(Heisenberg exchange)

Close to absolute zero H–H )1.5 )4.1
C–C 5.6 8.7
H–C 55.2 71.4

Close to room temperature H–H )1.4
C–C 5.0
H–C 55.9
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decreases comparied with the energy of the state with
S=1/2 for [Fe6S6]

5+ of the prismane geometry. The
redox potential calculated at the geometry change is of
the same order as in the case of the stable double
cubane geometry in this process but it is negative
(Table 2).

We present a function of the average spin energy (in
J1 units) versus temperature (in kelvin) for the pris-
mane structure in Fig. 10 and ESM, Figs. 20 and 21
(calculated in accordance with Eq. 9). For the
[Fe6S6]

4+ supercluster of the prismane type and for the
single exchange and resonance delocalization, the

Fig. 6. Energy levels of a few of
the lowest states depending on
the a1 parameter. The
continuous line marks the states
for [Fe6S6]

4+, whereas the
dashed line marks the states for
[Fe6S6]

5+, for the double
cubane structure (without
resonance delocalization)

Fig. 7. Energy levels of a few of the
lowest states in relation to the parameter
a1. The continuous line marks the states
for [Fe6S6]

4+, whereas the dashed line
marks the states for [Fe6S6]

5+, for the
prismane structure (without resonance
delocalization)
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function is constant irrespective of temperature for the
range of values of the parameter a1 examined. More-
over, we can observe a slight decrease in the average-
spin energy in the case of the resonance delocalization.
This results from the fact that the ground state is
strongly separated from excited states. In the case of
the [Fe6S6]

5+ ion of the same geometry the function is
more complicated. For a1=1.2, the linear function in-
creases with temperature, and with increasing value of

a1 a range of temperature appears for which the
function is non linear and increasing. This means that
at high temperatures the ground state is not so well
separated from other states and there appear occupied
excited spin states. For the +5 and +4 clusters of
prismane structure, the highest absolute values of the
average spin energy are connected with the highest
values of the a1 parameter. Moreover, for the set of the
a1 parameters, similarly as in the case of the energy of

Fig. 8. Energy levels of a few of the lowest
states in relation to the parameter a1, for
[Fe6S6]

4+ superclusters, for prismane S and
double cubane Sk structures (without resonance
delocalization)

Fig. 9. Energy levelsof a few of the
lowest states in relation to the
parameter a1, for [Fe6S6]

5+

superclusters, for prismane S and
double cubane Sk structures (without
resonance delocalization)
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the ground spin state for the superclusters, the order of
the average spin energy is the same, i.e., for [Fe6S6]

4+

the energy is lower than for [Fe6S6]
5+.

We present the average spin energy for the double
cubane structure in Fig. 11 and ESM, Figs. 22 and 23.
For [Fe6S6]

4+, we observe a slight decrease in the
average energy when we consider the resonance delo-
calization. The dependence of the average spin energy
(considering resonance delocalization) on temperature
for various values of the a1 parameter is shown in ESM,
Figs. 22 and 23. The dependence is non linear and
similar to that for the clusters of the prismane structure,
i.e., an increase of the a1 parameter also increases the
absolute value of the average spin energy in the whole
range of temperature by a constant value.

In the case of [Fe6S6]
5+ (Figs. 10, 11), the dependence

is more complicated than in the case of [Fe6S6]
4+. For

the a1 parameter this dependence is a non-linear func-
tion that increases with temperature. Let us note that the
existing non linearity is connected with the decreasing
influence of the a1 parameter on the value of the average
spin energy. This means that for high temperatures the
influence of geometry and of the valence of the iron ion
on the average value of the spin energy decreases.
Moreover, for temperatures above140 K the average
spin energy is positive, i.e., non-binding states appear
at these temperatures. The resonance delocalization
generally decreases the spin energy up to negative values
of the average spin energy over the whole range of
temperatures (from 0 K to room temperatures).

The redox potentials calculated as the differences of
the average spin energies and spin energies of the ground
states assuming that the cluster geometry can change in
the redox process are presented in Table 2. The data
collected in Table 2 allow us to interpret the dependence
of the redox potential on temperature from 0 K to room
temperature. One can notice that over the whole range

of temperatures in the redox process with a stable
geometry of the cluster (of double cubane type)
and irrespective of the whether we consider resonance
delocalization or not, the redox potential is positive and
relatively low (tens of J1). The situation is different when
the geometry of the cluster changes in this process
from the double cubane ([Fe6S6]

4+) to the prismane
([Fe6S6]

5+) one. Over the whole range of temperatures
both for single exchange and for double exchange the
redox potential changes to a negative value and its
absolute value becomes about twice as high as the
potential calculated for the case of the stable geometry.

Considering these changes, we can draw the conclu-
sion that the oxidation process is less favorable for the
hybrid and cubane geometry clusters than for the double
cubane and prismane ones. Moreover, as demonstrated
in the interpretation of the redox potential, it is possible
to obtain conformability of the theoretical and experi-
mental results.

Therefore, we have obtained theoretical results con-
cerning the double cubane structure that are close to the
experimental EPR and ox–redox potential results. This
fact endorses the theoretical model presented here that
allows us to describe properly the spin value in the
ground state, the redox potential, and geometry of the
active centers in proteins from D. vulgaris.

4 Concluding remarks

A theoretical study of the Heisenberg exchange and the
double exchange (delocalization) effects in Fe–S clusters
with four and six iron ions has been performed. The
clusters were modeled by the Fe(II) and Fe(III) ions.
Energies of the spin states were calculated numerically
depending on the Heisenberg exchange Ji and the dou-
ble-exchange b parameters.

Fig. 10. The average spin energy (in J1
units) as a function of temperature for
[Fe6S6]

4+ and [Fe6S6]
5+ prismane clusters

(without resonance delocalization)
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Since the whole energy spectrum was calculated, the
reduction process was considered. The size of the system
investigated and the complicated nature of the theoret-
ical model needed numerical calculations. It should be
pointed out that although all possible Heisenberg
parameters were introduced, only some of them have an
influence on the calculated results.

The calculated values of the redox potential for the
[Fe4S3O] and [Fe4S4] systems with the determined
geometry of the cluster allow us to affirm the following
statements:

– The calculated redox potential for the stable struc-
ture of the hybrid type, in this process, has a nega-
tive value and amounts to approximately 2 J1,
whereas for the cubane geometry the potential is
positive and amounts to approximately 6 J1.

– A change of the geometry from the cubane to the
hybrid structure in the redox process considerably

increases the value of the redox potential to approx-
imately 60 J1 (similarly as for the [Fe6S6] system).

– In all thecases discussed, an increase of temperature
(also for changes of the cluster geometry) does not
influence considerably the value of the calculated
redox potential.

An increase in the number of iron ions allows us to
examine the reciprocal influence of subsystems com-
prising four iron clusters each, through assuming
(possibly simple) model structures with six iron
superclusters, certainly maximal coupling of the spins
for the prismatic protein from D. vulgaris may derive
from eight iron superclusters. In this paper, we analyzed
the influence of changing the number of iron ions in
relation to the system with four ions. The analysis was
carried out on the basis of the [Fe6S6] system while
choosing prismane and double cubane structures. The
calculated values of the redox potential allow us to draw
the following conclusions:

– The lowest positive value of the redox potential was
determined (for the geometry stable in the redox
process) for the double cubane structure. An
increase in temperature increases the value of the
redox potential.

– When we consider the resonance delocalization, the
redox potential decreases with increasing tempera-
ture. A change of the cluster geometry influences the
redox potential, i.e., it changes from positive to a
negative value of approximately )70 J1.

– Theoretical considerations concerning the redox
potential allow us to state that the best results,
comparable to experimental data for D. vulgaris,
were obtained by increasing the number of iron ions,
i.e., for the compounds consisting of the four ion
system [Fe4S4] up to the six ion one [Fe6S6], and only
for the special double cubane geometry. Moreover,
for this structure the increase of temperature in
the redox process results in a decrease in the redox
potential.

The analysis of the redox potential calculations shows
that the reduction process takes place at the ‘‘frozen’’
double cubane structure and can be calculated as the
difference between the average spin state energies of

Fig. 11. The average spin energy (in J1 units) as a function of
temperature for [Fe6S6]

4+ and [Fe6S6]
5+ double cubane clusters

(without resonance delocalization)

Table 2. Redox potential for the [Fe6S6] system (in J1 units). Dc and P denote double cubane or prismane cluster geometry, respectively

Temperature Geometry of
the clusters

Redox potential as the difference
of the average energy of the spin
states

Redox potential as the difference
of the energy of the lowest spin
states

Heisenberg
exchange

Resonance
delocalization

Heisenberg
exchange

Resonance
delocalization

Close to absolute zero Dc–Dc 24.6 15.0 25.9 25.2
Dc–P )67.5 )51.7 )33.1 )25.6

Close to room temperature Dc–Dc 27.3 11.9
Dc–P )34.7 )23.2
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the tetravalent and pentavalent superclusters. For the
Heisenberg parameter J1=20 cm)1, the redox potential
(close to room temperature) amounts to +0.03 V
(11.9J1). This complies with the experimental values of the
redox potential for [Fe6S6]

5+/4+ that are close to zero.
It is generally believed that the model of the

Heisenberg exchange and double exchange interactions
in the Fe–S superclusters describes the physics of the
system in a sufficient way. Therefore, the results can
be applied in order to interpret many structural,
magnetic, and redox properties of proteins possessing
Fe–S active centers.
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Appendix

Model for the hybrid system

The Hamiltonian of Eq. (1) can be transformed,
excluding Ĥconst, into the following form for [Fe4S3 O]3+

Ĥ0 ¼ 1=2J12 Ŝ2
12 � Ŝ2

1 � Ŝ2
2

� �
þ 1=2J34 Ŝ2

34 � Ŝ2
3 � Ŝ2

4

� �
;

ð37Þ

Ĥ1 ¼ 1=2J13 Ŝ2
13 � Ŝ2

1 � Ŝ2
3

� �
þ 1=2J24 Ŝ2

24 � Ŝ2
2 � Ŝ2

4

� �
;

ð38Þ

and

Ĥ2 ¼ 1=2J14 Ŝ2
14 � Ŝ2

1 � Ŝ2
4

� �
þ 1=2J23 Ŝ2

23 � Ŝ2
2 � Ŝ2

3

� �

ð39Þ

and for [Fe4S3 O]2+

Ĥ0 ¼ 1=2J12Ŝ2
12 þ 1=2J34Ŝ2

34 ð40Þ

Ĥ1 ¼ 1=2J13Ŝ2
13 þ 1=2J24Ŝ2

24; ð41Þ

Ĥ2 ¼ 1=2J14Ŝ2
14 þ 1=2J23Ŝ2

23; ð42Þ

and

Ĥconst ¼ 1=2 J12 �Ŝ2
1 � Ŝ2

2

� �
þ J34 �Ŝ2

3 � Ŝ2
4

� ��

þJ13 �Ŝ2
1 � Ŝ2

3

� �
þ J24 �Ŝ2

2 � Ŝ2
4

� �

þJ14 �Ŝ2
1 � Ŝ2

4

� �
þ J23 �Ŝ2

2 � Ŝ2
3

� ��
:

ð43Þ

Eigenfunctions of the Hamiltonians in Eqs. (38) and
(39) determine three different coupling schemes of four

spins. Let us denote the eigenfunctions of Ĥ0, Ĥ1, and Ĥ2

(for [Fe4S3O]3+) respectively as

w S12; S34; Sð Þ ¼ S1S2 S12ð ÞS3S4 S34ð ÞSj i;
w S13; S24; Sð Þ ¼ S1S3 S13ð ÞS2S4 S24ð ÞSj i;
w S14; S23; Sð Þ ¼ S1S4 S14ð ÞS2S3 S23ð ÞSj i:

ð44Þ

On the other hand, the eigenfunctions of Ĥ1 have the
property

S1S3 S13ð ÞS2S4 S24ð ÞS j S1S2 S12ð ÞS3S4 S34ð ÞSh i

¼ 2S12 þ 1ð Þ 2S34 þ 1ð Þ 2S13 þ 1ð Þ 2S24 þ 1ð Þ½ �1=2

�
S1 S2 S12

S3 S4 S34

S13 S24 S

8
><

>:

9
>=

>;
:

ð45Þ

Similarly the eigenfunctions of Ĥ2 can be denoted as

S1S4 S14ð ÞS2S3 S23ð ÞS j S2 S12ð ÞS3S4 S34ð ÞSh iS1

¼ 2S12 þ 1ð Þ 2S34 þ 1ð Þ 2S14 þ 1ð Þ 2S23 þ 1ð Þ½ �
1=2

�

S1 S2 S12

S4 S3 S34

S14 S23 S

8
>><

>>:

9
>>=

>>;
:

ð46Þ

Model for the prismane system

In order to calculate the Heisenberg exchange energy,
the Hamiltonian (Eq. 11) should be transformed into the
following equivalent form:

Ĥ ¼ 1=2J1 Ŝ2
156 � Ŝ2

15 þ �Ŝ2
6

� �� �

þ 1=2J2 Ŝ2
1245 � Ŝ2

14 � Ŝ2
25 � Ŝ2

15 � 2Ŝ2
24

�

�þŜ2
234 þ Ŝ2

1 þ Ŝ2
2 � Ŝ2

3 þ Ŝ2
4 þ Ŝ2

5

� ��

þ 1=2J3 Ŝ2
246 � Ŝ2

24 þ �Ŝ2
6

� �� �
þ 1=2J4

� Ŝ2
135 þ Ŝ2

24 � Ŝ2
1 þ Ŝ2

2 þ Ŝ2
3 þ Ŝ2

4 þ Ŝ2
5

� �� �

þ 1=2J5 Ŝ2
36 þ �Ŝ2

3 � Ŝ2
6

� �� �
þ 1=2J6

� Ŝ2
14 þ Ŝ2

25 � Ŝ2
1 þ Ŝ2

2 þ Ŝ2
4 þ Ŝ2

5

� �� �
;

ð47Þ

where Ŝ2
ijkl ¼ Ŝi þ Ŝj þ Ŝk þ Ŝl

� �2
, Ŝ2

ijk ¼ Ŝi þ Ŝj þ Ŝk
� �2

,
and Ŝ2

ij ¼ Ŝi þ Ŝj
� �2

.
Since the Hamiltonian (Eq. 47) does not commute

with all spin operators, it can be divided into three parts,
namely, Ĥ0; Ĥ1; Ĥ2, in such a way that each part con-
sists of operators that commute with each other within a
given part, i.e.,

Ĥ0 ¼ 1=2 �J1Ŝ2
15 � J2 2Ŝ2

24 þ Ŝ2
15

� ��

þ J4 Ŝ2
246 � Ŝ2

24

� �
þ J4 Ŝ2

135 þ Ŝ2
24

� �
� þ Hconst;

ð48Þ
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Ĥ1 ¼ 1=2 J2 Ŝ2
1245 � Ŝ2

14 � Ŝ2
25

� �
þ J5Ŝ2

36 þ J6 Ŝ2
14 þ Ŝ2

25

� �� �
;

ð49Þ

and

Ĥ2 ¼ 1=2 J1Ŝ2
156 þ J2Ŝ2

234

� �
; ð50Þ

and a rest (corresponding to a constant):

Ĥconst ¼ 1=2 J1 �Ŝ2
6

� �
þJ2 Ŝ2

1 þ Ŝ2
2 � Ŝ2

3 þ Ŝ2
4 þ Ŝ2

5

� ��

þJ3 �Ŝ2
6

� �
þ J4 �Ŝ2

1 � Ŝ2
2 � Ŝ2

3 � Ŝ2
4 � Ŝ2

5

� �

þJ5 �Ŝ2
3 � Ŝ2

6

� �
þ J6 �Ŝ2

1 � Ŝ2
2 � Ŝ2

4 � Ŝ2
5

� ��
:

ð51Þ

Let us introduce a reduced dimensionless parameter
ai ¼ Jiþ1

J1
, where i = 1, 2, 3, 4, or 5.

The eigenfunctions of the total Hamiltonian (associ-
ated with the total spin S) can be presented as linear
combinations of the eigenfunctions given in one of the
coupling schemes (Eqs. 48, 49 or Eq. 50). We chose the
eigenfunctions of Ĥ0 for this purpose. The Hamiltonian
for the [Fe6S6]

4+ prismane system (Eq. 22) was trans-
formed to

Ĥ ¼ 1=2J1 Ŝ2
145� Ŝ2

15þ Ŝ2
236 � Ŝ2

26þ �Ŝ2
3 � Ŝ2

4

� �� �

þ 1=2J2 Ŝ2
1256� Ŝ2

12� Ŝ2
56� Ŝ2

15� Ŝ2
26

�

þ Ŝ2
1 þ Ŝ2

2 þ Ŝ2
5 þ Ŝ2

6

� ��

þ 1=2J3 Ŝ2
246� Ŝ2

26þ Ŝ2
135 � Ŝ2

15þ �Ŝ2
3 � Ŝ2

4

� �� �

þ 1=2J4 Ŝ2
15þ Ŝ2

26þ �Ŝ2
1 � Ŝ2

2 � Ŝ2
5 � Ŝ2

6

� �� �

þ 1=2J5 Ŝ2
12þ Ŝ2

56þ �Ŝ2
1 � Ŝ2

2 � Ŝ2
5 � Ŝ2

6

� �� �

þ 1=2J6 Ŝ2
34þ �Ŝ2

3 � Ŝ2
4

� �� �
:

ð52Þ

As not all the operators in the said Hamiltonian
commute with one another, it will be divided into three
parts—Ĥ0; Ĥ1; Ĥ2—so that all the operators commuted
with one another:

Ĥ0 ¼1=2J1 Ŝ2
145 � Ŝ2

15 þ Ŝ2
236 � Ŝ2

26

� �
þ 1=2J2 �Ŝ2

15 � Ŝ2
26

� �

þ 1=2J4 Ŝ2
15 þ Ŝ2

26

� �
þ Ĥconst; ð53Þ

Ĥ1 ¼ 1=2J3 Ŝ2
246 � Ŝ2

26 þ Ŝ2
135 � Ŝ2

15

� �
; ð54Þ

and

Ĥ2 ¼ 1=2J2 Ŝ2
1256 � Ŝ2

12 � Ŝ2
56

� �
þ 1=2J5 Ŝ2

12 þ Ŝ2
56

� �

þ 1=2J6Ŝ2
34; ð55Þ

where

Ĥconst¼ 1=2 J1 �Ŝ2
3 � Ŝ2

4

� �
þ J2 Ŝ2

1 þ Ŝ2
2 þ Ŝ2

5 þ Ŝ2
6

� ��

þ J3 �Ŝ2
3 � Ŝ2

4

� �
þ J4 �Ŝ2

1 � Ŝ2
2 � Ŝ2

5 � Ŝ2
6

� �

þ J5 �Ŝ2
1 � Ŝ2

2 � Ŝ2
5 � Ŝ2

6

� �
þ J6 �Ŝ2

3 � Ŝ2
4

� ��
:

ð56Þ
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